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Background: Individually, the red blood cell (RBC) polymorphisms sickle cell trait (HbAS) and α+thalassemia
protect against severe Plasmodium falciparum malaria. It has been shown through epidemiological studies that
the co-inheritance of both conditions results in a loss of the protection afforded by each, but the biological mech-
anisms remain unknown.
Methods:We used RBCs from N300 donors of various HbAS and α+thalassemia genotype combinations to study
the individual and combinatorial effects of these polymorphisms on a range of putative P. falciparum virulence
phenotypes in-vitro, using four well-characterized P. falciparum laboratory strains. We studied cytoadhesion of
parasitized RBCs (pRBCs) to the endothelial receptors CD36 and ICAM1, rosetting of pRBCs with uninfected
RBCs, and pRBC surface expression of the parasite-derived adhesion molecule P. falciparum erythrocyte mem-
brane protein-1 (PfEMP1).
Findings: We confirmed previous reports that HbAS pRBCs show reduced cytoadhesion, rosetting and PfEMP1
expression levels compared to normal pRBC controls. Furthermore, we found that co-inheritance of HbAS with
α+thalassemia consistently reversed these effects, such that pRBCs of mixed genotype showed levels of

cytoadhesion, rosetting and PfEMP1 expression that were indistinguishable from those seen in normal pRBCs.
However, pRBCs with α+thalassemia alone showed parasite strain-specific effects on adhesion, and no consistent
reduction in PfEMP1 expression.
Interpretation: Our data support the hypothesis that the negative epistasis between HbAS and α+thalassemia ob-
served in epidemiological studiesmight be explainedbyhost genotype-specific changes in the pRBC-adhesion prop-
erties that contribute to parasite sequestration and disease pathogenesis in vivo. The mechanism by which
α+thalassemia on its own protects against severe malaria remains unresolved.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

The burden of malaria, currently estimated at over 2 million epi-
sodes of clinical disease and 655,000 deaths annually (WHO, 2012),
has exerted strong selection on the human genome, leading to the oc-
currence at high frequencies of a number of host-protective polymor-
phisms (Kwiatkowski, 2005). Some of the best-documented examples
are inherited disorders of hemoglobin that include sickle hemoglobin
(HbS) and α+thalassemia (Williams, 2006). Carriers of HbS, which
gramme, Centre for Geographic
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results from the substitution of valine for the usual glutamic acid at
the 6th position of the β-globin amino acid chain, have sickle cell trait
(HbAS), a clinically silent condition that is associatedwith a high degree
of protection against all forms of clinical malaria (Taylor et al., 2012;
Williams et al., 2005a). α+thalassemia, which results from a deletion
of one of the paired α-globin genes on chromosome 16 (−α), has
been shown to protect against severe and fatal malaria in both its het-
erozygous (−α/αα) and homozygous (−α/−α) forms (Taylor et al.,
2012; Williams et al., 2005b). The significant overlap in the geographic
distributions of these two conditionsmeans that they are frequently co-
inherited (Flint et al., 1998). Nevertheless, rather than conferring an ad-
ditive advantage, co-inheritance of both HbAS andα+thalassemia is as-
sociated with the loss of themalaria-protection that is afforded by each
polymorphism individually (Williams et al., 2005c; Crompton et al.,
2008; May et al., 2007), through an unknown mechanism.
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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Sequestration of mature-stage Plasmodium falciparum-infected RBCs
(pRBCs) in the deepmicrovasculature appears to be central to the path-
ogenesis of severe malaria (Miller et al., 2002; van der Heyde et al.,
2006). This process involves both the binding of pRBCs directly to the
vascular endothelium (cytoadhesion) and the binding of pRBCs to
uninfected RBCs to form cell clusters known as rosettes (Rowe et al.,
2009). Both P. falciparum cytoadhesion and rosetting are mediated by
P. falciparum erythrocyte membrane protein-1 (PfEMP1), a parasite-
encoded protein that is expressed on the surface of mature-stage
pRBCs (Rowe et al., 1997; Baruch et al., 1996). Individually, it has been
suggested that both HbAS and α+thalassemia may protect against
severe malaria via reduced cytoadhesion and rosetting, and that this
reduction might be mediated by reduced expression of PfEMP1 on the
pRBC surface (Carlson et al., 1994; Udomsangpetch et al., 1993a,b;
Cholera et al., 2008; Krause et al., 2012; Butthep et al., 2006). Neverthe-
less, the literature regarding α+thalassemia is not completely consis-
tent in this regard, with no effect on cytoadhesion having been found
in two previous studies (Williams et al., 2002; Luzzi et al., 1991a) and
others having reported equal or raised levels of pRBC surface antigen ex-
pression (potentially due to raised PfEMP1 expression levels) (Williams
et al., 2002; Luzzi et al., 1991b). We were therefore interested to inves-
tigate whether the negative epistatic interaction between HbAS and
α+thalassemia might relate to changes in cytoadhesion, rosetting and
PfEMP1 expression in pRBCs of mixed genotype, a hypothesis that we
investigated in the current study using the largest panel of variant
RBCs studied to date.

2. Materials and Methods

2.1. Red Blood Cells

The static adhesion, rosetting and PfEMP1 experiments were con-
ducted using RBC samples selected on the basis of Hb phenotype and
α+thalassemia genotype, collected from members of a cohort of
children aged between 6 months and 11 years involved in a study of
the immune-epidemiology of malaria in Kilifi County on the coast of
Kenya (Williams et al., 2005d;Wambua et al., 2006). Samples were col-
lected during cross-sectional surveys conducted in May 2009 and May
2010. Whole blood samples were collected into heparinized tubes and
screened for malaria both by using a rapid diagnostic test (OptiMAL®
Diamed, Morat, Switzerland) and by light microscopy of thick and thin
Giemsa-stained blood films. Only blood samples from children testing
negative by both methods were used. Whole blood was pelleted by
centrifugation before removing the plasma by aspiration and then the
white blood cells by density centrifugation through Lymphoprep™
(Fresenius Kabi Norge AS for Axis-Shield PoC AS, Oslo, Norway). Purified
RBC pellets were washed twice then resuspended at 50% hematocrit in
RPMI 1640 medium (Invitrogen) supplemented with 25 mM HEPES,
2 mM L-glutamine (Invitrogen), 25 μg/ml gentamicin, 20 mM D-glucose
(Sigma) and 6 mM NaOH (incomplete RPMI). For cytoadhesion
assays, RBCs were stored at 4 °C and used within 4 days of collection.
For rosetting and flow cytometry experiments, RBCs were cryopre-
served in glycerolyte within 24 h of collection and thawed by standard
methods (Kinyanjui et al., 2004; Deans et al., 2006) the day before an
experiment.

The proportion of HbS in RBCs collected from HbAS individuals of
variousα+thalassemia genotypewas determined inmembers of a second
cohort study of children, the Kilifi Genetic Birth Cohort (KGBC) study
(Williams et al., 2009), from whom capillary samples of whole blood
were collected at enrolment (at 9–12 months of age) into EDTA anticoag-
ulant (Becton Dickinson, NJ, USA) between February 2006 and April 2009.

2.2. DNA Extraction and Genotyping

DNAwas extracted either from fresh whole blood samples using the
semi-automated ABI PRISM® 6100 Nucleic acid prep station (Applied
Please cite this article as: Herbert Opi, D., et al., Mechanistic Studies of the
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Biosystems) or from EDTA blood samples previously stored at −80 °C
using the QIAamp DNA Blood Mini Kit (Qiagen). Genotyping at the
HBB locus to distinguish between HbAA and HbAS individuals and at
theHBA locus for the 3.7 kbα-globin deletion that gives rise to common
African variant of α+thalassemia was conducted by PCR as described in
detail previously (Waterfall and Cobb, 2001; Chong et al., 2000). Swain-
Langley (Sl) andMcCoy (McC) Complement Receptor One (CR1) Knops
blood group genotypes were determined using the Sequenom iPLEX®
Gold MassArray SNP genotyping platform as previously described (Fry
et al., 2008).

2.3. RBC Phenotyping

ABO blood group phenotypes were determined by hemagglutina-
tion (Alba Bioscience, Edinburgh, UK). RBC surface CR1 expression
levels were determined by flow cytometry as previously described
(Cockburn et al., 2002). The proportion of intracellular HbS in RBCs
fromHbAS individuals was determined in fresh samples by high perfor-
mance liquid chromatography (HPLC) (Variant Analyzer, Bio-Rad, Her-
cules, CA, USA) using the β-thalassemia short program (Williams et al.,
2009). Full blood counts for the determination of RBC mean cell vol-
umes were performed on fresh EDTA-anticoagulated blood samples
using an MDII-18 counter (Beckman-Coulter, Fullerton CA, USA).

2.4. Parasites and Parasite Culture

P. falciparum ItG parasites (referred to as ItG-ICAM in some earlier
studies), a strain that binds to both CD36- and ICAM1 (Baruch et al.,
1996; Adams et al., 2000), was used for cytoadhesion assays, and IT/R29
(Roberts et al., 1992) and TM284R+ (Scholander et al., 1996) were
used for rosetting assays. ItG and IT/R29 have the same genotype but
have been selected for different adhesion phenotypes and express differ-
ent PfEMP1 variants (Rowe et al., 1997; Springer et al., 2004). Parasites
were cultured as described previously (Deans and Rowe, 2006) in blood
group O+ human RBCs at 2% hematocrit in supplemented RPMI (as de-
scribed above) plus 10% pooled non-malaria-exposed human serum. ItG
parasites were selected for binding to ICAM1 and aliquots of the selected
parasites cryo-preserved. Thawed aliquots were returned to culture
and used within three weeks of thawing. The rosetting IT/R29 and
TM284R+ parasite strains were maintained at baseline rosetting
frequencies of N50% by repeated selection using gelatin flotation or
density centrifugation on 60% Percoll (Sigma) as previously de-
scribed (Handunnetti et al., 1992). TM284R+ parasites showed
lower rosette frequencies (30–40%) when grown in 96 well plates
during experiments.

2.5. Magnetic Selection and Invasion

RBCs infected with late-stage pigmented trophozoites were purified
to N90% parasitemia from uninfected and ring-stage infected RBCs by
magnetic-activated cell sorting (MACS®) as described in detail previously
(Ribaut et al., 2008; Uhlemann et al., 2000). In the case of the rosetting
parasite strains IT/R29 and TM284R+, buffer preparations were supple-
mented with fucoidan at a final concentration of 50 μg/ml to prevent ro-
sette formation in culture (Kyriacou et al., 2007). α+thalassemic RBCs
display dose-dependent reductions in mean cell volume (MCV) and
mean cell hemoglobin (MCH) and a dose-dependent increase in erythro-
cyte count (Williams et al., 1996). In order to ensure comparable starting
parasitemias in α+thalassemic RBCs compared to normal RBCs, RBC
counts for each genotype were determined using a Neubauer improved
hemocytometer (BlauBrand, Wertheim, Germany). Purified trophozoites
were then used to invade the test RBCs at a starting parasitemia of 3.0%
(approximately 2.88 × 105 pRBCs and 9.6 × 106 uninfected test RBCs), ex-
cept for the ItG binding assays when the cultures were initiated at a
parasitemia of 1.5%. Parasites were cultured in 96-well flat-bottomed
plates (100 μl volume) (Corning Costar Co., Cambridge, MA, USA) or
Negative Epistatic Malaria-protective Interaction Between Sickle Cell
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small flasks (10 ml volume) at 2% hematocrit for one complete life-cycle
to mature pigmented trophozoite stages and then used in adhesion
assays, rosetting assays or flow cytometry.

2.6. Static Adhesion Assays

Binding assays were performed as described in detail previously
(Newbold et al., 1997; Ochola et al., 2011) using the purified recombi-
nant proteins CD36 (R & D Systems, UK) and ICAM1-Fc (a gift from
Professor Alister Craig, Liverpool School of Tropical Medicine). Bacterio-
logical Petri dishes (Falcon 1007; Becton Dickinson, Oxford, UK) were
coated with proteins at a concentration of 50 μg/ml at 37 °C for 2 h
and then blocked with Phosphate buffered saline (PBS)/1% BSA over-
night at 4 °C with an additional incubation at 37 °C for an hour. Each
Petri dishwas then incubated for 1 h at 37 °Cwith a 1.25ml parasite sus-
pension at 1% hematocrit and 3% mature pigmented trophozoites in
each donor's specific RBCs. Each donor RBC sample was tested in dupli-
cate Petri dishes. Bound infected RBCs were fixed with PBS/1% glutaral-
dehyde for 1 h at 4 °C before staining with 10% Giemsa for 15 min. All
wash steps and cell suspensions were conducted in bicarbonate-free
RPMI 1640 in 2% glucose, adjusted to pH 7.2. Images of adherent RBCs
were captured using an inverted microscope with six images taken
across random fields for each of triplicate spots for each protein on
each plate, giving 36 images per protein for each RBC donor. Image pro-
cessing and analysis was carried out using Image SXM software and the
results expressed as the mean number of parasitized erythrocytes
bound per mm2 of surface area (Barrett, 2008; Paton et al., 2011). It
was not technically feasible to perform cytoadherence assays in all 99
RBC samples on the same day, so the experiments were carried out on
5 separate days. Each sample was tested in two dishes run on the
same day and with triplicate spots of each protein in each dish. Every
experimental day included at least one sample of normal genotype
RBCs (AA αα/αα).

2.7. Rosetting Assays

Rosette frequency was assessed by fluorescence microscopy of
ethidium-bromide stained culture suspension as previously described
(Deans and Rowe, 2006). Rosette frequencywas defined as the percent-
age of mature pigmented trophozoite-stage pRBCs binding two ormore
uninfected RBCs among every 200 pRBCs counted. For each sample, ro-
sette frequency was counted from duplicate wells and themean rosette
frequency determined. We investigated rosetting in IT/R29 parasites in
a total of 59 RBC samples over two successive experimental days (day 1
n= 30 and day 2 n= 29). Rosetting in TM284R+ parasites was tested
in a total of 91 RBC samples in three separate experiments divided by
blood group, O (n = 31), A (n = 29) and B and AB (n = 31). Each of
the three TM284R+ rosetting experiments was repeated and the
mean rosette frequency from the duplicate experiments determined.

2.8. Flow Cytometry

PfEMP1 expression in live ItG pRBCs was tested on a single experi-
mental day in a total of 60 RBC samples. A three-step staining process
was used, with a 1:50 dilution of rat polyclonal anti-serum raised
against the ITvar16 PfEMP1 variant (a gift from Professor Alister
Craig), a secondary 1:33 dilution with goat anti-rat IgG (Serotec) and
a tertiary 1:250 dilution with Alexa Fluor 488 conjugated donkey anti-
goat IgG (H + L) (Invitrogen) plus 1.25 μg/ml of Hoechst 33342
(Invitrogen). All incubations were for 1 h on ice, followed by three
washes in PBS. A negative control incubated with The full name
Phosphate buffered salinemoves to line 204 PBS in place of the primary
antibodywas included for each test sample, with secondary and tertiary
antibodies as above. Samples were fixed in 0.5% paraformaldehyde
prior to acquisition. For each sample, a total of 200,000 events were ac-
quired on an LSR II flow cytometer (Becton Dickinson Biosciences) and
Please cite this article as: Herbert Opi, D., et al., Mechanistic Studies of the
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analyzed using proprietary software (Flow-Jo V9, Treestar Inc., Ashland,
OR, USA). Due to low specific antibody binding, pRBCs stained with
the ITvar16 PfEMP1 antisera resulted in a shift in the pRBC population
when compared to the negative control samples, rather than distinct
antibody-positive and antibody-negative populations (Fig. S1). The
whole Hoechst positive pRBC population was therefore gated, and the
Alexa Fluor 488 median fluorescent intensity (MFI) was measured. For
each donor the MFI of the negative control (Fig. S1A) was subtracted
from the MFI of the stained sample (Fig. S1B) to determine the
ITvar16-specific MFI.

Flow cytometry to measure PfEMP1 RBC surface expression in the
rosetting parasite strains IT/R29 and TM284R+ was carried out on the
same days and using the same samples as the rosetting assays. Staining
was as previously described (Ghumra et al., 2012) with 10 μg/ml of
anti-ITvar9 (Ghumra et al., 2011) or anti-TM284var1 (Ghumra et al.,
2012) rabbit polyclonal total IgG respectively, followed by Alexa Fluor
488 conjugated goat anti-rabbit IgG (H + L) (Invitrogen) at 1:1000 di-
lution. Fucoidan at a final concentration of 50 μg/ml was used through-
out the staining and acquisition steps to disrupt rosettes. Otherwise, the
incubation, washing, fixation and acquisition were as above. ITvar9 or
TM284var1 specific MFI was determined by taking theMFI of pRBCs pos-
itively staining for ITvar9 or TM284var1 PfEMP1 variants (upper right
quadrant) and subtracting the MFI of uninfected RBC samples (lower
left quadrant) (Fig. S2). For the determination of ITvar9- or TM284var1-
specific positive pRBC proportions, the proportion of pRBCs positively
staining (upper right quadrant) with the negative control (10 μg/ml of
total IgG from a non-immunized rabbit; Fig. S2A) was subtracted from
the proportion of pRBCs positively staining with the specific antibody
(Fig. S2B).

2.9. Statistical Analysis

All adhesion, rosetting and flow cytometry experiments were
carried out blinded to RBC genotype. All statistical analyses were
conducted using STATA v11 (StataCorp LP, Texas, USA) and graphs gen-
erated usingGraph Pad Prism v5 (GraphPad Software Inc, SanDiego, CA,
USA). The effect of HbAS and α+thalassemia on static adhesion,
rosetting and PfEMP1 expression was tested in a multivariate linear re-
gressionmodel, including experimental day as a covariate to account for
day-to-day variation in assay performance. Additional confounding var-
iables previously suggested to affect parasite adhesion phenotype were
examined for inclusion in the model, including host ABO blood group
(Udomsangpetch et al., 1993b; Carlson and Wahlgren, 1992; Rowe
et al., 1995; al-Yaman et al., 1995; Chotivanich et al., 1998), Sl and
McC Knops blood group genotype (Rowe et al., 1997), RBC surface CR1
expression level (Rowe et al., 1997) and RBC mean cell volume (MCV)
(Carlson et al., 1994). Inclusion of variables in the multivariate model
was based on a univariate analysis, with any variable displaying
P b 0.05 being tested for inclusion in the multivariate model. The final
model used for each analysis was determined by examining the effect
of each variable on the model fit using the log-likelihood ratio (lr)
test. Only variables that improved model fit were kept in the final anal-
yses, and these are indicated in the figure legends for each experiment.
All non-normally distributed data were normalized by square-root
transformation prior to analysis, and the resulting coefficients and 95%
confidence intervals were transformed back to the original scale to dis-
play graphically. A two-sided significance level of b0.05 was considered
statistically significant for all analyses. We tested for evidence that a re-
versal in static adhesion, rosetting and PfEMP1 expression with co-
inheritance of HbAS and α+thalassemia is the result of an interaction
between HbAS and α+thalassemia using the likelihood ratio (lr) test
for interaction.

As an alternative way of presenting the data, we also show in the
Supplementary figures the individual data points for each donor, adjust-
ed to account for day-to-day variation in assay performance by normal-
izing the data from each sample to the mean of the control (HbAAαα/
Negative Epistatic Malaria-protective Interaction Between Sickle Cell
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αα) cells run on the same day. Differences between median binding
values for each genotype were assessed by the Kruskal–Wallis test
with Dunn's multiple comparisons post-hoc test. This approach has
the benefit of visualizing the variation between donors within each ge-
notype more clearly than the figures in the main text. However, the lin-
ear regression model provides the most appropriate statistical analysis
of the data. Both methods gave similar results.

2.10. Ethical Conduct of Research

All blood samples were collected following individual informed
written consent from participants or their legal guardians. The study
was approved by the Kenya Medical Research Institute National Ethical
Review Committee in Nairobi and was conducted in accordance with
the Declaration of Helsinki.

3. Results

3.1. Independently, Both α+thalassemia and HbAS are Associated With
Reduced Cytoadhesion, a Phenomenon That is Reversed When Both
Polymorphisms are Inherited Together

Individually, both HbAS and α+thalassemia have been associated
with reduced P. falciparum cytoadhesion in some studies (Cholera
et al., 2008; Krause et al., 2012; Butthep et al., 2006); however, no
data are available regarding the effect of their co-inheritance.We inves-
tigated the effect of co-inherited HbAS and α+thalassemia on
cytoadhesion of pRBCs infected with parasites of the ItG strain (which
binds to both CD36 and ICAM1 (Baruch et al., 1996)) in a total of 99
RBC samples of various Hb and α+thalassemia genotype combinations.
Purified ItG pRBCs were invaded into donor RBCs and grown for one
asexual cycle before testing. The experiments were performed across
five separate days, so we analyzed the data by linear regression and in-
cluded experimental day as a covariate in the model. Alternative pre-
sentations of the data, showing individual data points and adjusting
for day-to-day binding variation by normalizing each sample to the
mean binding of the control RBC samples (AA αα/αα) for each day,
are shown in the supplementary figures.

In agreement with observations from one previous study (Krause
et al., 2012) but in contrast to those from two others (Williams et al.,
2002; Luzzi et al., 1991a), we found thatα+thalassemia was associated
with reduced binding to CD36, an observation that wasmost marked in
homozygotes (mean binding 1001.7 parasites/mm2 [95% CI 635.9–
Fig. 1. Cytoadherence of P. falciparum ItG pRBCs by HbAS and α+thalassemia genotype. Bindin
total of 99 RBC samples representing the six possible HbAS and α+thalassemia genotype comb
(N = 11), AS−α/αα (N = 18), AS−α/−α (N = 10)) using the P. falciparum ItG parasite st
(95% confidence intervals) as derived by linear regression. The dotted line shows the mean bin
with triplicate protein spots in each dish. Values that are statistically significantly different t
0.001 and ***P b 0.001.
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1450.2] compared to 1913.4 [1329.1–2603.9] in HbAAαα/αα controls
(P b 0.001)) (Fig. 1A, S3A & Table S1). HbAS alone was also associated
with significantly reduced binding to CD36 (1263.1; 774.3–1870.8;
P = 0.037). However, the adhesion in HbAS pRBCs increased sequen-
tially with α+thalassemia deletions, such that no significant reduction
was seen in pRBCswith both HbAS and either heterozygous or homozy-
gousα+thalassemia (likelihood ratio (lr) test for interaction χ2=11.14,
P = 0.004).

Patterns of pRBC binding to ICAM1 were similar to those seen for
CD36, with homozygous α+thalassemia being associated with signifi-
cantly lower pRBC binding (1891.9; 1320.5–2565.7) in comparison
to normal pRBCs (2858.2; 2057.1–3790.8; P = 0.007) (Figs. 1, S3 &
Table S1). Binding to ICAM1 was also lower in HbAS non-thalassemia
pRBCs (1819.2, 1160.7–2625.1; P = 0.014) (Figs. 1, S3 & Table S1).
However, as for CD36, these effects were reversed in pRBCs with co-
inherited HbAS and α+thalassemia (lr test for interaction χ2 = 7.50,
P = 0.024).

3.2. Altered PfEMP1 Expression Correlates With Reduced Cytoadherence in
HbAS but not in α+thalassemic pRBCs

PfEMP1 is the parasite-derived molecule expressed on the mature-
stage pRBC surface that mediates cytoadherence to both CD36 and
ICAM1 (Baruch et al., 1996; Springer et al., 2004). Previous studies
have implicated reduced PfEMP1 expression as a mechanism for the re-
duced cytoadherence that is associatedwithHbAS (Cholera et al., 2008),
although the data for α+thalassemia have been inconclusive (Krause
et al., 2012;Williams et al., 2002; Luzzi et al., 1991b).Wewere therefore
interested to determine whether the genotype-specific patterns of
binding we noted in our cytoadherence experiments might be ex-
plained by differences in PfEMP1 expression. We usedmagnetically pu-
rified mature-stage ItG-strain parasites to invade 60 RBC samples of
assorted HbAS and α+thalassemia genotype combinations. Consistent
with data from one previous study (Cholera et al., 2008), we found
that compared to normal pRBCs (Median Fluorescent Intensity (MFI),
346.2 (271.0–421.3), PfEMP1 expression was significantly lower in
HbAS pRBCs in the absence of α+thalassemia (134.6; 68.7–200.5;
P b 0.001) (Figs. 2, S4 & Table S1). However, in contrast to another
previous report (Krause et al., 2012) but consistent with data from
two others (Williams et al., 2002; Luzzi et al., 1991b), α+thalassemia
alone was associated with increased expression, of PfEMP1, an
observation that was significant for the homozygous genotype (469.0;
388.0–549.9; P = 0.004). The reduced PfEMP1 expression associated
g to (A) CD36 and (B) ICAM1 recombinant proteins. Static adhesion was investigated in a
inations (AA αα/αα (N= 21), AA−α/αα (N = 18), AA−α/−α (N = 21), AS αα/αα
rain. Data are expressed as the mean number of parasitized erythrocytes bound per mm2

ding in the control (AA αα/αα) pRBCs. Adhesion for each sample was tested in 2 dishes
o the wild type value by linear regression are in asterisk *P = 0.05 to 0.01, **P b 0.01 to
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Fig. 2. PfEMP1 expression in P. falciparum ItG pRBCs by HbAS and α+thalassemia geno-
type. PfEMP1 expression by the ItG parasite strain was determined by flow cytometry
using rat polyclonal antisera raised against the ITvar16 PfEMP1 variant predominantly
expressed by the ItG parasite strain. A total of 60 RBC samples representing the HbAS-
α+thalassemia genotype combinations were tested (AA αα/αα (N = 10), AA −α/αα
(N = 10), AA −α/−α (N = 11), AS αα/αα (N = 10), AS −α/αα (N = 9),
AS −α/−α (N = 10)). Differences in PfEMP1 expression by genotype were analyzed
by linear regression with adjustment for confounding by the ABO blood group. Results
are expressed as themeanMFI (95% CI). Thedotted line shows themeanMFI in the control
(AA αα/αα) pRBCs. MFI for each sample was tested in duplicate.
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with HbAS was reversed with co-inheritance of α+thalassemia (Figs. 2,
S4 & Table S1), although the interaction test was not significant (lr test
χ2 = 0.47, P = 0.789). While the decreased surface area of α-
+thalassemic RBCs may act as a potential confounder in these experi-
ments (Luzzi et al., 1991a,b), adjusting for cell surface area made no
material difference to the interpretation of these data (not shown).

3.3. Reduced Rosette Frequency and PfEMP1Rosetting Variant Expression in
HbAS pRBCs is Reversed on Co-inheritance With α+thalassemia

Having observed an association between co-inheritance of HbAS and
α+thalassemia with regard to cytoadhesion, we examined the effect of
co-inheritance on rosetting, an important parasite virulence phenotype
associated with severe malaria (Rowe et al., 1995, 2009; Mercereau-
Puijalon et al., 2008). For these experiments we used the rosetting
parasite strains IT/R29 and TM284R+ (Material andMethods) to inves-
tigate rosetting in a total of 59 and 91 mixed-genotype RBC samples
Fig. 3. Rosette frequency and PfEMP1 expression in P. falciparum IT/R29 pRBCs by HbAS and
Rosetting and PfEMP1 expression in the IT/R29 parasite strain were assessed on a total of 59 s
AS αα/αα (N = 9), AS −α/αα (N = 9) & AS −α/−α (N = 10). Differences in rosette frequ
asmean rosette frequency andMFIwith bars representing 95% confidence intervals. The dotted
frequency and MFI in each sample were tested in duplicate.
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respectively. We found no association between either heterozygous or
homozygous α+thalassemia and rosette frequencies when using IT/R29
parasites (Figs. 3A, S5A & Table S1). However, rosetting was greatly
reduced in HbAS pRBCs without α+thalassemia (mean frequency 10.2%
(−4.0–24.5) versus 56.0% (45.9–66.1) P b 0.001) (Figs. 3A, S5A &
Table S1), an effect that was reversed in pRBCs of mixed HbAS and
α+thalassemia genotype (lr test χ2 = 7.7, P = 0.021). These changes in
rosette frequency were mirrored by changes in PfEMP1 expression levels
in IT/R29 pRBCs, with PfEMP1 MFI and the proportion of ITvar9 positive
pRBCs being reduced in HbAS but not α+thalassemia when considered
individually (Figs. 3B, S5B, S5C & Table S1). The reduced PfEMP1 levels
and the lower proportion of ITvar9 positive pRBCs seen in samples from
HbAS subjects were reversed on co-inheritance with homozygous
α+thalassemia (lr test χ2 = 16.95 (P b 0.001) and lr test χ2 = 9.75
(P = 0.008)) respectively (Figs. 3B, S5B, S5C & Table S1).

In experiments with a second P. falciparum rosetting strain
TM284R+, rosetting and PfEMP1 expression showed a modest reduc-
tion in pRBCs with α+thalassemia alone and a more marked reduction
in pRBCswithHbAS alone (Figs. 4, S6 & Table S1). Aswith IT/R29, the ef-
fect of HbS was reversed in pRBCs of mixed HbAS and α+thalassemia
genotype for both rosetting (lr test χ2 = 6.70, P = 0.035) and PfEMP1
expression level (lr test χ2 = 7.34, P = 0.025) (Figs. 4, S6 & Table S1).
3.4. α+thalassemia is Associated With Reduced Proportions of Circulating
HbS in HbAS Individuals in Kilifi

Previous studies in India and theDemocratic Republic of Congo have
shown that α+thalassemia is associated with a dose-dependent de-
crease in the proportion of total Hb that is represented by HbS in the
RBCs of HbAS individuals (Brittenham et al., 1977; Mouele et al.,
2000), a phenomenon that might play a part in the loss of malaria pro-
tection in HbAS subjects with co-inherited α+thalassemia (Hood et al.,
1996). We investigated whether the same relationship between HbS
proportion and α+thalassemia existed among HbAS subjects in our
study population in Kilifi, Kenya. We used HPLC to measure the relative
proportions of the various forms of hemoglobin (predominantly HbA,
HbS and HbF) in whole blood samples collected from a cohort of 593
children with HbAS (see Materials and Methods). Compared with
HbAS children without α+thalassemia (mean HbS proportion 34.3%),
HbS proportions were significantly lower in α+thalassemia heterozy-
gotes (30.8; mean difference, 3.5; P b 0.0001) and homozygotes (26.0;
8.3; P b 0.0001) (Fig. 5).
α+thalassemia genotype. (A) IT/R29 rosette frequency. (B) ITvar9 PfEMP1 expression.
amples that included AA αα/αα (N = 10), AA−α/αα (N= 10), AA−α/−α (N= 11),
ency and MFI by genotype were analyzed by linear regression and results are expressed
line shows themean rosetting frequency orMFI in the control (AAαα/αα) pRBCs. Rosette
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Fig. 4. Rosette frequency and PfEMP1 expression in P. falciparum TM284R+ pRBCs by HbAS and α+thalassemia genotype. (A) TM284R+ rosette frequency. (B) TM284var1 PfEMP1 ex-
pression. Rosetting and PfEMP1 expression were assessed on a total of 91 samples (AA αα/αα (N= 18), AA−α/αα (N = 17), AA−α/−α (N= 16), ASαα/αα (N= 13), AS−α/αα
(N=15), AS−α/−α (N= 12)). Differences in rosette frequency andMFI by genotypewere analyzedby linear regressionwith adjustment for CR1RBC expression levels and additionally
for the Sl Knops blood groupwhen looking at rosette frequency. Results are expressed as themean rosette frequency andMFI with bars representing 95% confidence intervals. The dotted
line represents the mean rosetting frequency or MFI in the control (AA αα/αα) pRBCs. Rosette frequency and MFI in each sample were tested in duplicate in two independent
experiments.
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4. Discussion

A survival advantage against severe malaria is nowwidely accepted
as the explanation for the occurrence at high frequencies of both HbAS
andα+thalassemia inmalaria-endemic populations. Nevertheless, little
is known about the epidemiological and clinical consequences of the
co-inheritance of these two conditions, a common occurrence in many
parts of the malaria-endemic world. Recent studies from both the
Kenyan Coast and fromWest Africa have provided evidence for a nega-
tive epistatic interaction betweenHbAS andα+thalassemiawith regard
to their protective effects against clinicalmalaria (Williams et al., 2005c;
Fig. 5. The association betweenα+thalassemia genotype and intracellular HbS proportion
in Kenyan children. Proportion of HbS by α+thalassemia status was determined by HPLC
on EDTA-anticoagulated blood collected from a total of 593 HbAS children aged between
9–12 months from the KilifiGenetic Birth Cohort (KGBC) study. Lines representmeanHbS
proportions. Differences in mean HbS proportions by genotype were tested using the
ANOVA test with Holm Sidak's multiple comparisons post-hoc test. In parenthesis are
number of samples for each genotype tested.
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May et al., 2007; Crompton et al., 2008), a phenomenon that may ex-
plain differences in their distribution in various parts of the world
(Penman et al., 2009, 2011).

In the present study, we explored the effects of coinheritance of
HbAS and α+thalassemia on a range of phenotypes that are believed
to be associated with the pathogenesis of severe and complicated
malaria, including cytoadhesion, rosetting and PfEMP1 expression. We
found that pRBCs from donors with HbAS showed reductions in
cytoadhesion, rosetting and PfEMP1 expression in experiments involv-
ing three different P. falciparum strains and more than 300 RBC donors.
Our data support those obtained in a previous study reported by Cholera
and colleagues (Cholera et al., 2008) suggesting that HbAS might pro-
tect against severe malaria by reducing P. falciparum sequestration.
However, we show for the first time that co-inheritance of HbAS with
α+thalassemia reverses these effects such that pRBCs from donors
with both mutations show levels of cytoadhesion, rosetting and
PfEMP1 expression that are similar to those seen in normal pRBCs. Our
data therefore support the hypothesis that the negative epistasis be-
tween HbAS and α+thalassemia observed in epidemiological stud-
ies might be explained by changes in the adhesion properties of
P. falciparum-infected pRBCs.

Themechanisms bywhichα+thalassemia mutations reverse the ef-
fect of HbAS on PfEMP1 expression and pRBC adhesion are unclear. We
have previously proposed (Williams et al., 2005c) that it might relate to
the observation that concentrations of HbS in the RBCs of HbAS individ-
uals are negatively correlated with the number of α-globin deletions,
the lowest concentrations being seen in individuals with homozygous
α+thalassemia (Mouele et al., 2000; Brittenham et al., 1980), a phe-
nomenon that we have confirmed in the current study. Experiments
conducted in mice with Plasmodium yoelii, a murine model for parasite
sequestration, seem to support such a hypothesis: in one study, while
transgenic mice expressing high HbS proportions developed low
parasitemia infections and recovered completely, mice expressing
lower levels of HbS experienced severe infections and died (Hood
et al., 1996). Recently, it has been suggested that HbS might interfere
with the development of the parasite trafficking pathways that are
involved in the transportation of PfEMP1 and other molecules to the
pRBC surface (Cyrklaff et al., 2011; Kilian et al., 2013). It seems plausible
that this trafficking defectmight be critically dependent on the intracel-
lular concentration of HbS, providing a mechanistic link between intra-
cellular HbS concentration and cell surface PfEMP1 expression levels
that can be tested in future work.
Negative Epistatic Malaria-protective Interaction Between Sickle Cell
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One issue that was not resolved in the current study is the mecha-
nism by which α+thalassemia on its own results in protection from
severe malaria. Although a previous study reported both reduced bind-
ing to human microvascular endothelial cells and reduced PfEMP1 ex-
pression in α+thalassemic pRBCs (Krause et al., 2012), this finding
contrasts with other previous studies (Williams et al., 2002; Luzzi
et al., 1991a,b), and was also not supported by our current study, in
whichwe saw reduced cytoadhesion (Fig. 1), but no concomitant reduc-
tion in PfEMP1 expression (Fig. 2). The differences between our findings
and those of Krause and colleagues may well reflect a difference in
experimental design. While Krause and colleagues used multiple
P. falciparum strains in their experiments, they only included 4–5
donor controls and between 2 and 6 RBC donors of each variant geno-
type. Furthermore, their PfEMP1 experiments included no individuals
with homozygousα+thalassemia. Data from our current and a previous
study (Williams et al., 2002) both show that even when using a single
P. falciparum strain, there is considerable variation in the levels of
cytoadhesion and PfEMP1 expression between different donors of the
same genotype (Figs. S3 and S4). It is possible that studies using small
numbers of RBC donors might produce donor-specific results that may
not be truly representative. For this reason, we used a reductionist ap-
proach in our current study, keeping the parasite strain constant and
using large numbers of RBC donors within each experiment. However,
our current data do suggest that the parasite strain used may influence
the results seen in studies of α+thalassemic RBCs. For example, the
rosetting parasite TM284R+ showed a minor reduction in rosette fre-
quency in α+thalassemic RBCs whereas the IT/R29 parasite did not
(Figs. 3 and 4). Previous work has suggested reduced rosetting in
α+thalassemic RBCs (Carlson et al., 1994; Udomsangpetch et al.,
1993a); however, these studies also suffer from limitations in the samples
tested. Carlson et al. (1994) studied one parasite strain with three α-
+thalassemia heterozygote donors, while Udomsangpetch et al. (1993a)
studied one parasite strain and a heterogeneous group of 20 donors that
included more severe hematological abnormalities such as Hb Constant
Spring and HbE. Taken together, the above studies show that the effect
ofα+thalassemia on pRBC adhesion and PfEMP1 expression remains un-
resolved, possibly due to parasite strain-specific effects and differences in
experimental design between existing studies. Future studies of this sort
should aim to maximize both the number of donors and the number of
P. falciparum strains within technically feasible limits.

In the current studywe investigated PfEMP1 expression in RBCs that
had been previously cryopreserved and thawed prior to inoculation
with P. falciparum. While it is possible that this approach could lead to
genotype-specific artifacts, data from our laboratory using fresh RBCs
and a different ICAM1 and CD36 binding laboratory-adapted parasite
strain, A4U, also showed reduced PfEMP1 expression in HbS pRBC that
was reversed with co-inheritance of α+thalassemia (supplementary
material, Fig. S7). Therefore a consistent effect of RBC genotype on
PfEMP1 expression is seen with four different P. falciparum strains,
using both fresh and cryopreserved cells.

In conclusion, ourdata suggest that thenegative epistatic interactionbe-
tween HbAS and α+thalassemia with regard to malaria protection that is
seen at an epidemiological level might in part be explained by changes in
the cytoadhesion and rosetting properties of mixed-genotype pRBCs,
which might in turn relate to altered expression of PfEMP1. It remains to
be tested how this relates to defects in parasite protein trafficking systems
(Cyrklaff et al., 2011), andwhether other importantmechanisms of protec-
tion including altered knob expression on the surface of pRBCs (Cholera
et al., 2008; Krause et al., 2012), enhanced immune responses (Williams
et al., 2005d; Verra et al., 2007) and phagocytosis (Ayi et al., 2004) might
also be attenuated in this negative interaction.
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